Further Pure	Mathematics	FP1	Mark	scheme
---------------------	--------------------	-----	------	--------

Question	Scheme		
1	$\sum_{r=1}^{n} r(r^2 - 3) = \sum_{r=1}^{n} r^3 - 3\sum_{r=1}^{n} r$		
	$=\frac{1}{4}n^{2}(n+1)^{2}-3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r^2-3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1
		Correct expression (or equivalent)	A1
	$=\frac{1}{4}n(n+1)[n(n+1)-6]$	dependent on the previous M markAttempt to factorise at least $n(n+1)$ having attempted to substitute both the standard formulae	dM1
	$=\frac{1}{4}n(n+1)\left[n^2+n-6\right]$	{this step does not have to be written]	
	$= \frac{1}{4}n(n+1)(n+3)(n-2)$	Correct completion with no errors	A1 cso
			(4)
			4 marks)

Notes:

Applying eg. n=1, n=2, n=3 to the printed equation without applying the standard formulae to give a=1, b=3, c=-2 or another combination of these numbers is M0A0M0A0.

Alternative Method:

Obtains
$$\sum_{r=1}^{n} r(r^2 - 3) = \frac{1}{4} n(n+1) [n(n+1) - 6] = \frac{1}{4} n(n+a)(n+b)(n+c)$$

So $a = 1$. $n = 1 \Rightarrow -2 = \frac{1}{4} (1)(2)(1+b)(1+c)$ and $n = 2 \Rightarrow 0 = \frac{1}{4} (2)(3)(2+b)(2+c)$
leading to either $b = -2$, $c = 3$ or $b = 3$, $c = -2$
dM1: dependent on the previous M mark.
Substitutes in values of n and solves to find $b = ...$ and $c = ...$
A1: Finds $a = 1, b = 3, c = -2$ or another combination of these numbers.
Using **only** a method of "proof by induction" scores 0 marks unless there is use of the standard formulae when the first M1 may be scored.
Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{1}{2}n^3 - \frac{5}{4}n^2 - \frac{3}{2}n$ or $\frac{1}{4}n(n^3 + 2n^2 - 5n - 6)$
or $\frac{1}{4}(n^4 + 2n^3 - 5n^2 - 6n) \rightarrow \frac{1}{4}n(n+1)(n+3)(n-2)$, from no incorrect working.
Give final A0 for eg. $\frac{1}{4}n(n+1)[n^2 + n - 6] \rightarrow = \frac{1}{4}n(n+1)(x+3)(x-2)$ unless recovered.

Question	Scheme		Marks
2(a)	$P: y^2 = 28x$ or $P(7t^2, 14t)$		
	$(y^2 = 4ax \Longrightarrow a = 7) \Longrightarrow S(7,0)$	Accept (7,0) or $x = 7$, $y = 0$ or 7 marked on the <i>x</i> -axis in a sketch	B1
(b)	(4 1 D1 1: 4) 7	Divides their <i>x</i> coordinate from	(1)
	{A and B have x coordinate} $\frac{1}{2}$	(a) by 2	
	So $y^2 = 28\left(\frac{7}{2}\right) \Rightarrow y^2 = 98 \Rightarrow y =$ or	and substitutes this into the parabola equation and takes the sqaure root to find $y =$ or applies	M1
	$y = \sqrt{(2(7) - 3.5)^2 - (3.5)^2} \left\{ = \sqrt{(10.5)^2 - (3.5)^2} \right\}$ or $z = \sqrt{2} \left\{ = \sqrt{(10.5)^2 - (3.5)^2} \right\}$	$y = \sqrt{\left(2("7") - \left(\frac{"7"}{2}\right)\right)^2 - \left(\frac{"7"}{2}\right)^2}$	
	$7t^2 = 3.5 \Rightarrow t = \sqrt{0.5} \Rightarrow y = 2(7)\sqrt{0.5}$	or solves $7t^2 = 3.5$ and finds y = 2(7)"their t"	
	$y = (\pm)7\sqrt{2}$	<i>At least one</i> correct exact value of <i>y</i> . Can be unsimplified or simplified.	A1
	A, B have coordinates $\left(\frac{7}{2}, 7\sqrt{2}\right)$ and		
	$\left(\frac{7}{2},-7\sqrt{2}\right)$		
	Area triangle <i>ABS</i> =		
	• $\frac{1}{2}\left(2(7\sqrt{2})\right)\left(\frac{7}{2}\right)$	dependent on the previous M mark	
	• $\frac{1}{2}$ 7 35 35 7	A full method for finding	dM1
	$\begin{vmatrix} -7 & -7 & -7 & -7 & -7 & -7 & -7 & -7 $	the area of triangle ADS.	
	$=\frac{49}{2}\sqrt{2}$	Correct exact answer.	A1
			(4)
		(2)	5 marks)

Question 2 continued

Notes:

(a)

You can give B1 for part (a) for correct relevant work seen in either part (a) or part (b).

(b)

1st **M1:** Allow a slip when candidates find the *x* coordinate of their midpoint as long as 0 < their midpoint < their *a*

Give 1^{st} M0 if a candidate finds and uses y = 98

1st **A1:** Allow any **exact value** of either $7\sqrt{2}$, $-7\sqrt{2}$, $\sqrt{98}$, $-\sqrt{98}$, $14\sqrt{0.5}$, awrt 9.9 or awrt -9.9

2nd dM1: Either $\frac{1}{2} (2 \times \text{their "} 7\sqrt{2} ") (\text{their } x_{\text{midpoint}})$ or $\frac{1}{2} (2 \times \text{their "} 7\sqrt{2} ") (\text{their "} 7" - x_{\text{midpoint}})$ Condone area triangle $ABS = (7\sqrt{2}) (\frac{7}{2})$, i.e. $(\text{their "} 7\sqrt{2} ") (\frac{\text{their "} 7"}{2})$ **2nd A1:** Allow exact answers such as $\frac{49}{2}\sqrt{2}$, $\frac{49}{\sqrt{2}}$, $24.5\sqrt{2}$, $\frac{\sqrt{4802}}{2}$, $\sqrt{\frac{4802}{4}}$, $3.5\sqrt{2}$, $49\sqrt{\frac{1}{2}}$

or $\frac{7}{2}\sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2\sqrt{98})$ seen by itself.

Give final A0 for finding 34.64823228... without reference to a correct exact value.

Question	Sch	eme		Marks
3(a)	$f(x) = x^2 + \frac{3}{x} - 1, x < 0$			
	$f'(x) = 2x - 3x^{-2}$	At one of either $x^2 \rightarrow \pm Ax$ or $\frac{3}{x} \rightarrow \pm Bx^{-2}$		M1
		Correct	differentiation	A1
		Either f	$\overline{r(-1.5)} = -0.75$ or	
	. 13	f'(-1.5)	$=-\frac{13}{3}$ or awrt -4.33 or a	
	$f(-1.5) = -0.75$, $f'(-1.5) = -\frac{15}{3}$		correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$	
		Can be		
	$\left\{\alpha \approx -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \approx -1.5 - \frac{-0.75}{-4.333333}$ dependent on the previous M mark Valid attempt at Newton- Raphson using their values of f(-1.5) and f'(-1.5)		dM1	
	$\left\{ \alpha = -1.67307692 \text{ or } -\frac{87}{52} \right\} \Rightarrow \alpha = -1.$	$= -1.67307692 \text{ or } -\frac{87}{52} \Rightarrow \alpha = -1.67$ dependent on all 4 previous marks $-1.67 \text{ on their first iteration}$		A1 cso
			iterations)	Cao
	Correct differentiation followed by a (a)	correct a	nswer scores full marks in	
	Correct answer with <u>no</u> working scor	es no ma	rks in (a)	
	Way 1			(5)
(D)	f(-1.675) = 0.01458022 f(-1.665) = -0.0295768	Cho whi ans atte	poses a suitable interval for x, ch is within ± 0.005 of their wer to (a) and at least one mpt to evaluate $f(x)$.	M1
	Sign change (positive, negative) (and f(is continuous) therefore (a root) $\alpha = -1.67$ (2 dp)	(x) Bot true 1 st	h values correct awrt (or neated) c, sign change and conclusion.	A1 cso
				(2)

Quest	tion	Scheme		Marks
3(b)	Way 2		
contin	nued	Alt 1: Applying Newton-Raphson again Eg. Using		
		$\alpha = -1.67, -1.673$ or $-\frac{87}{52}$		
		• $\alpha \approx -1.67 - \frac{-0.007507185629}{-4.415692926} \{= -1.671700115\}$ • $\alpha \approx -1.673 - \frac{0.005743106396}{-4.41783855} \{= -1.671700019\}$ • $\alpha \approx -\frac{87}{52} - \frac{0.006082942257}{-4.417893838} \{= -1.67170036\}$	Evidence of applying Newton- Raphson for a second time on their answer to part (a)	M1
		So $\alpha = -1.67 (2 \text{ dp})$	$\alpha = -1.67$	A1
				(2)
			(*	7 marks)
Notes:				
B1: dM1:	Incon NR f B1 c Eg. Final f'(-1 in -1 score Give	Free differentiation followed by their estimate of α with no ever formula is final dM0A0. an be given for a correct numerical expression for either $f(-1.5)^2$ either $(-1.5)^2 + \frac{3}{(-1.5)} - 1$ or $2(-1.5) - \frac{3}{(-1.5)^2}$ are fine for B1. I - This mark can be implied by applying at least one correct val .5) $1.5 - \frac{f(-1.5)}{f'(-1.5)}$. So just $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$ with an incorrect answer as final dM0A0. I final dM0 for applying $1.5 - \frac{f(-1.5)}{f'(-1.5)}$ without first quoting the	idence of applying t) or f'(–1.5) ue of either f(–1.5) r and no other evide e correct N-R formu	or nce Ila.
(D) A1: be a (n square	Way Cance a rea or a ninim are al A mi No e Stati suffi Acce	1: correct solution only didate needs to state both of their values for $f(x)$ to awrt (or true son and conclusion. Reference to change of sign or eg. $f(-1.67)$ diagram or < 0 and > 0 or one positive, one negative are sufficient al, not incorrect) conclusion, eg. $\alpha = -1.67$, root (or α or part of ll acceptable. Ignore the presence or absence of any reference inimal acceptable reason and conclusion is "change of sign, her explicit reference to 2 decimal places is required. ng "root is in between -1.675 and -1.665 " without some reference cient for A1 ept 0.015 as a correct evaluation of $f(-1.675)$	ncated) 1 sf along w 75)× $f(-1.665) < 0$ cient reasons. There (a)) is correct, QED to continuity. the root".	rith e must O and a

217

Question 3 notes continued

(b)

A1: Way 2: correct solution only

Their conclusion in Way 2 needs to convey that they understand that $\alpha = -1.67$ to 2 decimal places. Eg. "therefore my answer to part (a) [which must be -1.67] is correct" is fine for A1. $-1.67 - \frac{f(-1.67)}{f'(1.67)} = -1.67(2 \text{ dp})$ is sufficient for M1A1 in part (b).

The root of f(x) = 0 is -1.67169988..., so candidates can also choose x_1 which is less than

-1.67169988... and choose x_2 which is greater than -1.67169988... with both x_1 and x_2 lying in the interval [-1.675, -1.665] and evaluate $f(x_1)$ and $f(x_2)$.

Helpful Table

x	f(x)
-1.675	0.014580224
-1.674	0.010161305
-1.673	0.005743106
-1.672	0.001325627
-1.671	-0.003091136
-1.670	-0.007507186
-1.669	-0.011922523
-1.668	-0.016337151
-1.667	-0.020751072
-1.666	-0.025164288
-1.665	-0.029576802

Question	Scheme		Marks
4(a)	$\mathbf{A} = \begin{pmatrix} k & 3 \\ -1 & k+2 \end{pmatrix}$ where k is a constant and let	$g(k) = k^2 + 2k + 3$	
	$\{\det(\mathbf{A}) = \} k(k+2)+3 \text{ or } k^2+2k+3$	Correct det(A), un-simplified or simplified	B1
	Way 1		
	$=(k+1)^2-1+3$	Attempts to complete the square [usual rules apply]	M1
	$=(k+1)^2+2>0$	$(k+1)^2 + 2$ and > 0	A1 cso
			(3)
	Way 2	-	
	$\{\det(\mathbf{A}) = \} k(k+2)+3 \text{ or } k^2+2k+3$	Correct det(A), un-simplified or simplified	B1
	$\left\{b^2 - 4ac = \right\} 2^2 - 4(1)(3)$	Applies " $b^2 - 4ac$ " to their det(A)	M1
	 All of b²-4ac = -8 < 0 some reference to k² + 2k + 3 being above the <i>x</i>-axis so det(A) ≥ 0 	Complete solution	
			(2)
	Way 2		(3)
	$\{g(k) = \det(\mathbf{A}) = \} k(k+2) + 3 \text{ or } k^2 + 2k + 3$	Correct det(A), un-simplified or simplified	B1
	$g'(k) = 2k + 2 = 0 \Longrightarrow k = -1$ $g_{\min} = (-1)^2 + 2(-1) + 3$	Finds the value of k for which g'(k) = 0 and substitutes this value of k into $g(k)$	M1
	$g_{\min} = 2$, so det(A) > 0	$g_{min} = 2$ and states det(A) > 0	A1 cso
			(3)
(b)	$\mathbf{A}^{-1} = \frac{1}{k^2 + 2k + 3} \begin{pmatrix} k+2 & -3\\ 1 & k \end{pmatrix}$	$\frac{1}{\text{their det}(\mathbf{A})} \begin{pmatrix} k+2 & -3\\ 1 & k \end{pmatrix}$	M1
		Correct answer in terms of <i>k</i>	A1
			(2)
			(5 marks)

219

Question 4 continued

Notes:

(a)

B1: Also allow k(k+2) = -3

Way 2: Proving $b^2 - 4ac = -8 < 0$ by itself could mean that $det(\mathbf{A}) > 0$ or $det(\mathbf{A}) < 0$.

To gain the final A1 mark for Way 2, candidates need to show $b^2 - 4ac = -8 < 0$ and make some reference to $k^2 + 2k + 3$ being above the *x*-axis (eg. states that coefficient of k^2 is positive or evaluates det(A) for any value of *k* to give a positive result or sketches a quadratic curve that is above the *x*-axis) before then stating that det(A) > 0.

Attempting to solve det(\mathbf{A}) = 0 by applying the quadratic formula or finding $-1\pm\sqrt{2}i$ is enough to score the M1 mark for Way 2. To gain A1 these candidates need to make some reference to $k^2 + 2k + 3$ being above the *x*-axis (eg. states that coefficient of k^2 is positive or evaluates det(\mathbf{A}) for any value of *k* to give a positive result or sketches a quadratic curve that is above the *x*-axis) before then stating that det(\mathbf{A}) > 0.

(b)

					(k+2)	-3	
A1:	Allow either	$\frac{1}{\left(k+1\right)^2+2}\binom{k+2}{1}$	$\begin{pmatrix} -3 \\ k \end{pmatrix}$	or	$\boxed{\frac{1}{k^2 + 2k + 3}}{\frac{1}{k^2 + 2k + 3}}$	$\frac{\overline{k^2 + 2k + 3}}{k}$ $\frac{k}{k^2 + 2k + 3}$	or equivalent.

Question	S	cheme	Marks
5	$2z + z^* = \frac{3+4i}{7+i}$		
	Way 1		
		Left hand side = $2(a+ib) + (a-ib)$	
	${2z + z^*} = 2(a + ib) + (a - ib)$	Can be implied by eg. $3a + ib$	B1
		Note: This can be seen anywhere in their solution	51
	$\dots = \frac{(3+4i)}{(7+i)} \frac{(7-i)}{(7-i)}$	Multiplies numerator and denominator of the right hand side by $7 - i$ or -7 + i	M1
	25 + 25i	Applies $i^2 = -1$ to and collects like terms to give	Δ 1
		right hand side = $\frac{25 + 25i}{50}$ or equivalent	AI
		dependent on the previous B and M	
	So, $3a + ib = \frac{1}{2} + \frac{1}{2}i$ $\Rightarrow a = \frac{1}{6}, b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	marks Equates either real parts or imaginary parts to give at least one of $a =$ or b =	ddM1
		Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
			(5)
	Way 2		
	$\{2z + z^* =\} 2(a + ib) + (a - ib)$	Left hand side = $2(a+ib) + (a-ib)$	R1
		Can be implied by eg. $3a + ib$	D1
	$(3a + ib)(7 + i) = \dots$	Multiplies their $(3a + ib)$ by $(7 + i)$	M1
	$21a + 3ai + 7bi - b = \dots$	Applies $i^2 = -1$ to give left hand side = $21a + 3ai + 7bi - b$	A1
	So, $(21a - b) + (3a + 7b) = 3 + 4i$	dependent on the previous B and M marks	
	gives $21a - b = 3$, $3a + 7b = 4$	Equates both real parts and imaginary parts to give at least one of $a =$ or b =	ddM1
	$\Rightarrow a = \frac{1}{6}, b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
		1	(5)
	•	(1	5 marks)

Question 5 continued

Notes:

Some candidates may let z = x + iy and $z^* = x - iy$.

So apply the mark scheme with $x \equiv a$ and $y \equiv b$.

For the final A1 mark, you can accept exact equivalents for *a*, *b*.

Question	Sche	me		Marks
6(a)	$H: xy = 25$, $P\left(5t, \frac{5}{t}\right)$ is a general point	on H		
	Either $5t\left(\frac{5}{t}\right) = 25$ or $y = \frac{25}{x} = \frac{25}{5t} = \frac{25}{5t}$	5 or א 5	$c = \frac{25}{y} = \frac{25}{\frac{5}{t}} = 5t \text{or} \text{states}$	B1
				(1)
(b)	$y = \frac{25}{x} = 25x^{-1} \Rightarrow \frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k$ where k	$k x^{-2}$	
	$xy = 25 \Longrightarrow x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	Correct sum of correct.	use of product rule. The two terms, one of which is	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{th}}$	$\frac{1}{\operatorname{eir} \frac{\mathrm{d}x}{\mathrm{d}t}}$	
	$\left\{ \text{At } A, \ t = \frac{1}{2}, \ x = \frac{5}{2}, \ y = 10 \right\} \Longrightarrow \frac{dy}{dx} = -4$	Correct numerical gradient at <i>A</i> , which is found using calculus. Can be implied by later working		A1
	So, $m_N = \frac{1}{4}$	Applies numerio from us Can be	$m_N = \frac{-1}{m_T}$, to find a cal m_N , where m_T is found sing calculus. Fimplied by later working	M1
	• $y-10 = \frac{1}{4}\left(x-\frac{5}{2}\right)$ • $10 = \frac{1}{4}\left(\frac{5}{2}\right) + c \Rightarrow c = \frac{75}{8} \Rightarrow y = \frac{1}{4}$	$x + \frac{75}{8}$	Correct line method for a normal where a numerical $m_N (\neq m_T)$ is found from using calculus. Can be implied by later working	M1
	leading to $8y-2x-75=0$ (*)		Correct solution only	A1
			•	(5)

QuestionSchemeMarks6(c)
$$y = \frac{25}{x} \Rightarrow 8\left(\frac{25}{x}\right) - 2x - 75 = 0$$
 or $x = \frac{25}{y} \Rightarrow 8y - 2\left(\frac{25}{y}\right) - 75 = 0$
or $x = 5t$, $y = \frac{5}{t} \Rightarrow 8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0$
Substitutes $y = \frac{25}{x}$ or $x = \frac{25}{y}$ or $x = 5t$ and $y = \frac{5}{t}$ into the printed equation
or their normal equation to obtain an equation in either x only, y only or t onlyM1Substitutes $y = \frac{25}{x}$ or $x = \frac{25}{y}$ or $x = 5t$ and $y = \frac{5}{t}$ into the printed equation
or their normal equation to obtain an equation in either x only, y only or t onlyM1 $2x^2 + 75x - 200 = 0$ or $8y^2 - 75y - 50 = 0$ or $2t^2 + 15t - 8 = 0$ or
 $10t^2 + 75t - 40 = 0$ M1 $2x^2 + 75x - 200 = 0$ or $8y^2 - 75y - 50 = 0$ or $2t^2 + 15t - 8 = 0$ or
 $10t^2 + 75t - 40 = 0$ M1 $(2x - 5)(x + 40) = 0 \Rightarrow x = ...$ or $(y - 10)(8y + 5) = 0 \Rightarrow y = ...$ or
 $(2x - 5)(x + 40) = 0 \Rightarrow t = ...$ M1dependent on the previous M mark
Correct attempt of solving a 3 TQ to find either $x = ..., y = ...$ or $t = ...$ M1 $B(-40, -\frac{5}{8})$ Both correct coordinates (If coordinates
are not stated they can be paired together
as $x = ..., y = ...$)A1 $B(-40, -\frac{5}{8})$ Both correct coordinates (If coordinates
are not stated they can be paired together
as $x = ..., y = ...$)A1(a)A conclusion is not required on this occasion in part (a).B1:Condone reference to $c = 5$ (as $xy = c^2$ and $(ct, \frac{c}{t})$ are referred in the Formula book.)(b) $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = -\frac{5}{t^2} (\frac{1}{5}) = -\frac{1}{t^2} \Rightarrow m_N = t^2 \Rightarrow y - 10 = t^2 (x - \frac{5}{2})$ scores only the first M1.When $t = \frac{1}{2}$ is substituted giving $y - 10 = \frac{1}{4} (x - \frac{5}{2})$ the response then automatically gets

Question 6 notes *continued*

(c)

You can imply the final three marks (dM1A1A1) for either

•
$$8\left(\frac{25}{x}\right) - 2x - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$$

•
$$8y - 2\left(\frac{25}{y}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$$

•
$$8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$$

with no intermediate working.

You can also imply the middle dM1A1 marks for either

•
$$8\left(\frac{25}{x}\right) - 2x - 75 = 0 \rightarrow x = -40$$

•
$$8y - 2\left(\frac{25}{y}\right) - 75 = 0 \rightarrow y = -\frac{5}{8}$$

•
$$8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow x = -40 \text{ or } y = -\frac{5}{8}$$

with no intermediate working.

Writing
$$x = -40$$
, $y = -\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8}, -40\right)$ is final A0.
Ignore stating $B\left(\frac{5}{2}, 10\right)$ in addition to $B\left(-40, -\frac{5}{8}\right)$

Question			Scheme		Marks
7(a)	Rotation	Rotation			B1
	67 degrees (anticlockwise)	Either ar awrt 67 c (anticlock 5.1 clock	$tan\left(\frac{12}{5}\right)$, tan^{-1} legrees, awrt 2 kwise), awrt 2 wise	$\left(\frac{12}{5}\right)$, $\sin^{-1}\left(\frac{12}{13}\right)$, $\cos^{-1}\left(\frac{5}{13}\right)$, 1.2, truncated 1.1 293 degrees clockwise or awrt	B1 o.e.
	about (0, 0)	The mar previous About (0	k is depende B marks bei (, 0) or about	nt on at least one of the ng awarded. <i>O</i> or about the origin	dB1
	Note: Give 2 nd B0 for o.e.	r 67 degree	es clockwise		(3)
(b)	$\{\mathbf{Q}=\} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$			Correct matrix	B1
					(1)
(c)	$\{\mathbf{R} = \mathbf{PQ}\} \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{12} & \frac{5}{13} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{12} & \frac{12}{12} \end{pmatrix}$ Multiplies P by their Q in the correct order and finds at least one element			M1	
				Correct matrix	A1
					(2)
(d)	Way 1				1
	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$	Forming the equation "their matrix $\mathbf{R}''\begin{pmatrix}x\\kx\end{pmatrix} = \begin{pmatrix}x\\kx\end{pmatrix}$ Allow <i>x</i> being replaced by any non-zero number eg. 1. Can be implied by at least one correct ft equations		M1	
	$-\frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \frac{5}{13}x + \frac{12kx}{13} = kx \implies k = \dots$ Uses the form an progress $k = \text{nume}$		Uses their matrix equation to form an equation in k and progresses to give k = numerical value	M1	
	So <i>k</i> = 5		dependent of $k = 5$	on only the previous M mark	A1 cao
	Dependent on all pre	vious mai	rks being sco	red in this part. Either	
	• Solves both $-\frac{12}{13}x + \frac{5kx}{13} = x$ and $\frac{5}{13}x + \frac{12kx}{13} = kx$ to give $k = 5$				
	• Finds $k = 5$ and	d checks th	nat it is true fo	or the other component	A1 cso
	Confirms that	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$	$\begin{pmatrix} x \\ 5x \end{pmatrix} = \begin{pmatrix} x \\ 5x \end{pmatrix}$		
					(4)

Question	Scheme		Marks			
7(d)	Way 2					
continued	Either	Correct follow through				
	$\cos 2\theta = -\frac{12}{12}$, $\sin 2\theta = \frac{5}{12}$ or $\tan 2\theta = -\frac{5}{12}$	equation in	M1			
	13 13 12	2θ based on their matrix R				
		then θ and applying $\tan \theta$	M1			
	$\{k =\} \tan\left(\frac{1}{\arctan\left(\frac{1}{1} \operatorname{arccos}\left(-\frac{12}{1}\right)\right)\right)$	$\tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ or				
		$\tan(awrt 78.7^{\circ})$ or	A1			
		tan(awrt 1.37). Can be				
		implied.				
	So $k = 5$	<i>k</i> = 5 by a correct solution only	A1			
		I	(4)			
		(1	0 marks)			
Notes:						
(a)						
Condone "T	Furn'' for the 1^{st} B1 mark.					
Penalise the	first B1 mark for candidates giving a combination	on of transformations.				
(C)						
Allow 1 st M1 for eg. "their matrix $\mathbf{R}'' \begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ or "their matrix $\mathbf{R}'' \begin{pmatrix} k \\ k^2 \end{pmatrix} = \begin{pmatrix} k \\ k^2 \end{pmatrix}$						
or "their mat	or "their matrix $\mathbf{R}'' \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix}$ or equivalent					
$y = (\tan \theta)x$	$y = (\tan \theta)x : \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$					

	_
DNA	Т
ΓΙΝΙ	

Question		Scheme	Marks
8(a)	$f(z) = z^4 + 6z^3 + 76z^2 + az + b$, a, b are real constants. $z_1 = -3 + 8i$ is given.		
	-3-8i	-3-8i	B1
			(1)
(b) $z^2 + 6z + 73$		Attempt to expand $(z-(-3+8i))(z-(-3-8i))$ or any valid method <i>to establish a quadratic</i> <i>factor</i> $eg z = -3\pm 8i \Rightarrow z+3 = \pm 8i \Rightarrow z^2 + 6z + 9 = -64$ or sum of roots -6, product of roots 73	M1
		to give $z^2 \pm (\text{sum})z + \text{product}$	
		$z^2 + 6z + 73$	A1
		Attempts to find the other quadratic factor.	
		eg. using long division to get as far as $z^2 +$	M1
	$f(z) = (z^{-} + 6z + 73)(z^{-} + 3)$	or eg. $f(z) = (z^2 + 6z + 73)(z^2 +)$	
		z^2+3	A1
$\left\{z^2 + 3 = 0 \Longrightarrow z = \right\} \pm \sqrt{3}i$		dependent on only the previous M mark Correct method of solving the 2 nd quadratic factor	dM1
		$\sqrt{3}$ i and $-\sqrt{3}$ i	A1
			(6)
(c)		 Criteria -3±8i plotted correctly in quadrants 2 and 3 with some evidence of symmetry Their other two <i>complex roots</i> (which are found from solving their 2nd quadratic in (b)) are plotted correctly with some evidence of symmetry about the <i>x</i>-axis 	
	-3 $-\sqrt{3}$ -8	Re Satisfies at least one of the two criteria Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1 ft B1 ft
			(2)
		(9)) marks)

Question 8 continued

Notes:

(b)

Give 3rd M1 for $z^2 + k = 0$, $k > 0 \Rightarrow$ at least one of either $z = \sqrt{k}$ i or $z = -\sqrt{k}$ i

Give 3^{rd} M0 for $z^2 + k = 0$, $k > 0 \implies z = \pm ki$

Give 3rd M0 for $z^2 + k = 0$, $k > 0 \implies z = \pm k$ or $z = \pm \sqrt{k}$

Candidates do not need to find a = 18, b = 219

Question	Scheme		Marks
9(a)	$2x^2 + 4x - 3 = 0$ has roots α , β		
	$\alpha + \beta = -\frac{4}{2}$ or $-2, \ \alpha\beta = -\frac{3}{2}$	Both $\alpha + \beta = -\frac{4}{2}$ and $\alpha\beta = -\frac{3}{2}$. This may be seen or implied anywhere in this question.	B1
(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	Use of a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1
	$= (-2)^2 - 2\left(-\frac{3}{2}\right) = 7$	7 from correct working	A1 cso
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$	Use of an appropriate and correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1
	$= (-2)^{3} - 3(-\frac{3}{2})(-2) = -17$ or $= (-2)(7\frac{3}{2}) = -17$	-17 from correct working	A1 cso
		1	(5)
(b)	Sum = $\alpha^2 + \beta + \beta^2 + \alpha$ = $\alpha^2 + \beta^2 + \alpha + \beta$ = $7 + (-2) = 5$	Uses at least one of their $\alpha^2 + \beta^2$ or $\alpha + \beta$ in an attempt to find a numerical value for the sum of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1
	Product = $(\alpha^2 + \beta)(\beta^2 + \alpha)$ = $(\alpha\beta)^2 + \alpha^3 + \beta^3 + \alpha\beta$ = $\left(-\frac{3}{2}\right)^2 - 17 - \frac{3}{2} = -\frac{65}{4}$	Expands $(\alpha^2 + \beta)(\beta^2 + \alpha)$ and uses at least one of their $\alpha\beta$ or $\alpha^3 + \beta^3$ in an attempt to find a numerical value for the product of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1
	$x^2 - 5x - \frac{65}{4} = 0$	Applies $x^2 - (sum)x + product$ (Can be implied) (" = 0" not required)	M1
	$4x^2 - 20x - 65 = 0$	Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1
			(4)

Question	S	cheme		Marks
9(b)	Alternative: Finding $\alpha^2 + \beta$ and $\beta^2 + \alpha$ explicitly			
continued	Eq. Let $\alpha = \frac{-4 + \sqrt{40}}{\beta}$ $\beta = \frac{-4 + \sqrt{40}}{\beta}$ and so			
	$\frac{4}{2}$ $\frac{4}{5}$ $\frac{4}{5}$ $\frac{4}{5}$ $\frac{4}{5}$ $\frac{4}{5}$ $\frac{4}{5}$	10		
	$\alpha^{2} + \beta = \frac{\beta^{2} + \beta^{2}}{2}, \beta^{2} + \alpha = \frac{\beta^{2} + \beta^{2}}{2}$			
	$\left(x - \left(\frac{5 - 3\sqrt{10}}{2}\right)\right) \left(x - \left(\frac{5 + 3\sqrt{10}}{2}\right)\right) \qquad \text{Uses } \left(x - \left(\alpha^2 + \beta\right)\right) \left(x - \left(\beta^2 + \alpha\right)\right) \\ \text{with exact numerical values. (May expand first)} \right)$			M1
				1411
	$= x^{2} - \left(\frac{5 + 3\sqrt{10}}{2}\right)x - \left(\frac{5 - 3\sqrt{10}}{2}\right)x + $	$\left(\frac{5-3\sqrt{10}}{2}\right)\left(\frac{5+3\sqrt{10}}{2}\right)$	Attempts to expand using exact numerical values for	M1
			$\alpha^2 + \beta$ and $\beta^2 + \alpha$	
	$\rightarrow x^2$ 5x 65 0	Collect terms to give a 3	$\beta + \alpha$ BTQ.	 M1
	$\Rightarrow x - 5x - \frac{3}{4} = 0$	(" = 0" not required)		IVI I
	Any integer multiple of $4x^2 - 20x - 65 = 0$ including the "= 0"		A 1	
		$4x^{-20x-05=0}$, including the "= 0"		AI
				(4)
			(9	marks)
Notes:				
(a)	2			
1 st A1: α +	$\beta = 2, \ \alpha\beta = -\frac{3}{2} \Rightarrow \alpha^2 + \beta^2 = 4 - 2\left(-\frac{3}{2}\right)$) = 7 is M1A0 cso		
Finding α +	$\beta = -2, \ \alpha\beta = -\frac{3}{2}$ by writing down or	applying $\frac{-4+\sqrt{40}}{4}$, $\frac{-4-\sqrt{40}}{4}$	$\frac{1}{\sqrt{40}}{\sqrt{40}}$ but then	
writing $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 + 3 = 7$ and $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -8 - 9 = -17$ scores B0M1A0M1A0 in part (a).				
Applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0				
Eg: Give no credit for $\left(\frac{-4+\sqrt{40}}{4}\right)^2 + \left(\frac{-4+\sqrt{40}}{4}\right)^2 = 7$				
or for $\left(\frac{-4+\sqrt{40}}{4}\right)^3 + \left(\frac{-4+\sqrt{40}}{4}\right)^3 = -17$				
(b)				
Candidates are allowed to apply $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (b).				
A correct method leading to a candidate stating $a = 4, b = -20, c = -65$ without writing a				
final answer of $4x^2 - 20x - 65 = 0$ is final M1A0				

231

Question	Scheme			Marks
10	$u_1 = 5, u_{n+1} = 3u_n + 2, n \ge 1$. Required to prove the result,			
	$u_n = 2 \times (3)^n - 1, \ n \in \mathbb{Z}^+$			
(i)	$n=1: u_1 = 2(3) - 1 = 5$	$u_1 = 2(3)$	$1 - 1 = 5$ or $u_1 = 6 - 1 = 5$	B1
	(Assume the result is true for $n = k$)			
	$u_{k+1} = 3(2(3)^k - 1) + 2$ Substitutes $u_k = 2(3)^k - 1$ into $u_{k+1} = 3u_k + 2$		M1	
		dependent on the previous M mark		dM1
	$= 2(3)^{k+1} - 1$ Expresses u_{k+1} in term of 3^{k+1} $u_{k+1} = 2(3)^{k+1} - 1$ by correct solution only		ses u_{k+1} in term of 3^{k+1}	
			$2(3)^{k+1} - 1$ by correct solution only	A1
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been		A.1	
	shown to be true for $n = 1$,	then the	e result <u>is true for all <i>n</i></u>	AI 050
				(5)
	Required to prove the result $\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n}$, $n \in \mathbb{Z}^+$			
(ii)			Shows or states both LHS = $\frac{4}{3}$ and	
	$n = 1$ ·LHS = $\frac{4}{7}$ RHS = $3 - \frac{5}{7} = \frac{4}{7}$		$RHS = \frac{4}{2}$	B1
	3	3 3	3	
			or states LHS = RHS = $\frac{-3}{3}$	
	(Assume the result is true for $n = k$)			
	$\sum_{r=1}^{k+1} \frac{4r}{3^r} = 3 - \frac{(3+2k)}{3^k} + \frac{4(k+1)}{3^{k+1}}$		Adds the $(k+1)^{\text{th}}$ term to the sum of k terms	M1
			dependent on the previous M mark	
			Makes 3^{k+1} or $(3)3^k$ a common	dM1
	$= 3 - \frac{3(3+2k)}{3^{k+1}} + \frac{4(k+1)}{3^{k+1}}$		denominator for their fractions.	
			denominator 3^{k+1} or $(3)3^k$ for their	A1
			fractions.	
	$= 3 - \left(\frac{3(3+2k) - 4(k+1)}{3^{k+1}}\right)$			
	$= 3 - \left(\frac{5+2k}{3^{k+1}}\right)$			
	$= 3 - \frac{(3+2(k+1))}{3^{k+1}}$		$3 - \frac{(3+2(k+1))}{3^{k+1}}$ by correct solution only	A1
	If the result is true for $n = k$, then it is true for $n = k+1$. As the result has been		A1 cso	
	shown to be true for $n = 1$, then th	e result <u>is true for all n</u>	111 050
			· · · · · · · · · · · · · · · · · · ·	(6)
				11 marks)

Question 10 continued

Notes:

(i) & (ii)

Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.

(i)

 $u_1 = 5$ by itself is not sufficient for the 1st B1 mark in part (i).

 $u_1 = 3 + 2$ without stating $u_1 = 2(3) - 1 = 5$ or $u_1 = 6 - 1 = 5$ is B0

(ii)

LHS = RHS by itself is not sufficient for the 1^{st} B1 mark in part (ii).