Further Pure Mathematics FP1 Mark scheme

Question
Scheme
1

$\sum_{r=1}^{n} r\left(r^{2}-3\right)=\sum_{r=1}^{n} r^{3}-3 \sum_{r=1}^{n} r$				
$=\frac{1}{4} n^{2}(n+1)^{2}-3\left(\frac{1}{2} n(n+1)\right)$	Attempts to expand $r\left(r^{2}-3\right)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1		
	Correct expression (or equivalent)	A 1		
$=\frac{1}{4} n(n+1)[n(n+1)-6]$	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both the standard formulae	dM1		
$=\frac{1}{4} n(n+1)\left[n^{2}+n-6\right]$	\{this step does not have to be written $]$	Correct completion with no errors	A1 cso	(4)
:---				
$=\frac{1}{4} n(n+1)(n+3)(n-2)$				

Notes:

Applying eg. $n=1, n=2, n=3$ to the printed equation without applying the standard formulae to give $a=1, b=3, c=-2$ or another combination of these numbers is M0A0M0A0.

Alternative Method:

Obtains $\sum_{r=1}^{n} r\left(r^{2}-3\right) \equiv \frac{1}{4} n(n+1)[n(n+1)-6] \equiv \frac{1}{4} n(n+a)(n+b)(n+c)$
So $a=1 . \quad n=1 \Rightarrow-2=\frac{1}{4}(1)(2)(1+b)(1+c)$ and $n=2 \Rightarrow 0=\frac{1}{4}(2)(3)(2+b)(2+c)$
leading to either $b=-2, c=3$ or $b=3, c=-2$

dM1: dependent on the previous M mark.

Substitutes in values of n and solves to find $b=\ldots$ and $c=\ldots$
A1: Finds $a=1, b=3, c=-2$ or another combination of these numbers.
Using only a method of "proof by induction" scores 0 marks unless there is use of the standard formulae when the first M1 may be scored.
Allow final dM1A1 for $\frac{1}{4} n^{4}+\frac{1}{2} n^{3}-\frac{5}{4} n^{2}-\frac{3}{2} n \quad$ or $\frac{1}{4} n\left(n^{3}+2 n^{2}-5 n-6\right)$ or $\frac{1}{4}\left(n^{4}+2 n^{3}-5 n^{2}-6 n\right) \rightarrow \frac{1}{4} n(n+1)(n+3)(n-2)$, from no incorrect working.
Give final A0 for eg. $\frac{1}{4} n(n+1)\left[n^{2}+n-6\right] \rightarrow=\frac{1}{4} n(n+1)(x+3)(x-2)$ unless recovered.

2(a)	$P: y^{2}=28 x$ or $P\left(7 t^{2}, 14 t\right)$		B1
	$\left(y^{2}=4 a x \Rightarrow a=7\right) \Rightarrow S(7,0)$	Accept $(7,0)$ or $x=7, y=0$ or 7 marked on the x-axis in a sketch	
			(1)
(b)	So $y^{2}=28\left(\frac{7}{2}\right) \Rightarrow y^{2}=98 \Rightarrow y=\ldots$ or $y=\sqrt{(2(7)-3.5)^{2}-(3.5)^{2}}\left\{=\sqrt{(10.5)^{2}-(3.5)^{2}}\right\}$ or $7 t^{2}=3.5 \Rightarrow t=\sqrt{0.5} \Rightarrow y=2(7) \sqrt{0.5}$	Divides their x coordinate from (a) by 2 and substitutes this into the parabola equation and takes the sqaure root to find $y=\ldots$ or applies $y=\sqrt{\left(2(" 7 ")-\left(\frac{" 7 "}{2}\right)\right)^{2}-\left(\frac{" 7 "}{2}\right)^{2}}$ or solves $7 t^{2}=3.5$ and finds $y=2(7)$ " their $t "$	M1
	$y=(\pm) 7 \sqrt{2}$	At least one correct exact value of y. Can be unsimplified or simplified.	A1
	A, B have coordinates $\left(\frac{7}{2}, 7 \sqrt{2}\right)$ and $\left(\frac{7}{2},-7 \sqrt{2}\right)$		
	Area triangle $A B S=$		
	- $\frac{1}{2}(2(7 \sqrt{2}))\left(\frac{7}{2}\right)$ - $\frac{1}{2}\left\|\begin{array}{cccc}7 & 3.5 & 3.5 & 7 \\ 0 & 7 \sqrt{2} & -7 \sqrt{2} & 0\end{array}\right\|$	dependent on the previous M mark A full method for finding the area of triangle $A B S$.	dM1
	$=\frac{49}{2} \sqrt{2}$	Correct exact answer.	A1
			(4)
(5 marks)			

Question 2 continued

Notes:

(a)

You can give B1 for part (a) for correct relevant work seen in either part (a) or part (b).
(b)
$\mathbf{1}^{\text {st }}$ M1: Allow a slip when candidates find the x coordinate of their midpoint as long as $0<$ their midpoint $<$ their a

Give $1^{\text {st }} \mathrm{M} 0$ if a candidate finds and uses $y=98$
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: Allow any exact value of either $7 \sqrt{2},-7 \sqrt{2}, \sqrt{98},-\sqrt{98}, 14 \sqrt{0.5}$, awrt 9.9 or awrt -9.9
$\mathbf{2}^{\text {nd }} \mathbf{d M 1}$: Either $\frac{1}{2}(2 \times$ their " $7 \sqrt{2}$ " $)\left(\right.$ their $\left.x_{\text {midpoint }}\right) \quad$ or $\frac{1}{2}(2 \times$ their " $7 \sqrt{2}$ " $)\left(\right.$ their " 7 " $\left.-x_{\text {midpoint }}\right)$
Condone area triangle $A B S=(7 \sqrt{2})\left(\frac{7}{2}\right)$, i.e. $($ their " $7 \sqrt{2}$ " $)\left(\frac{\text { their " } 7 \text { " }}{2}\right)$
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: Allow exact answers such as $\frac{49}{2} \sqrt{2}, \frac{49}{\sqrt{2}}, 24.5 \sqrt{2}, \frac{\sqrt{4802}}{2}, \sqrt{\frac{4802}{4}}, 3.5 \sqrt{2}, 49 \sqrt{\frac{1}{2}}$
or $\frac{7}{2} \sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2 \sqrt{98})$ seen by itself.
Give final A0 for finding $34.64823228 \ldots$ without reference to a correct exact value.

3(a)	$\mathrm{f}(x)=x^{2}+\frac{3}{x}-1, \quad x<0$			
	$\mathrm{f}^{\prime}(x)=2 x-3 x^{-2} \quad \|$A 3	At one of either $x^{2} \rightarrow \pm A x$ or $\frac{3}{x} \rightarrow \pm B x^{-2}$ where A and B are non-zero constants.		M1
		Correct differentiation		A1
	$\mathrm{f}(-1.5)=-0.75, \mathrm{f}^{\prime}(-1.5)=-\frac{13}{3} \quad \left\lvert\, \begin{aligned} & \text { Eit } \\ & \mathrm{f}^{\prime}(\\ & \text { co } \\ & \text { eit } \\ & \text { Ca }\end{aligned}\right.$	Either $\mathrm{f}(-1.5)=-0.75$ or $f^{\prime}(-1.5)=-\frac{13}{3}$ or awrt -4.33 or a correct numerical expression for either $f(-1.5)$ or $f^{\prime}(-1.5)$ Can be implied by later working		B1
	$\left\{\alpha \simeq-1.5-\frac{\mathrm{f}(-1.5)}{\mathrm{f}^{\prime}(-1.5)}\right\} \Rightarrow \alpha \simeq-1.5-\frac{-0.75}{-4.333333 \ldots}$		dependent on the previous M mark Valid attempt at NewtonRaphson using their values of $f(-1.5)$ and $f^{\prime}(-1.5)$	dM1
	$\left\{\alpha=-1.67307692 \ldots \text { or }-\frac{87}{52}\right\} \Rightarrow \alpha=-1.67$		dependent on all 4 previous marks -1.67 on their first iteration (Ignore any subsequent iterations)	A1 cso cao
	Correct differentiation followed by a correct answer scores full marks in (a) Correct answer with no working scores no marks in (a)			
				(5)
(b)	Way 1			
	$\begin{aligned} & \mathrm{f}(-1.675)=0.01458022 \ldots \\ & \mathrm{f}(-1.665)=-0.0295768 \ldots \end{aligned}$		ses a suitable interval for x, h is within ± 0.005 of their er to (a) and at least one pt to evaluate $\mathrm{f}(x)$.	M1
	Sign change (positive, negative) (and $\mathrm{f}(x)$ is continuous) therefore (a root) $\alpha=-1.67(2 \mathrm{dp})$		values correct awrt (or ated) sign change and conclusion.	A1 cso
				(2)

3(b) continued	Way 2		
	Alt 1: Applying Newton-Raphson again Eg. Using $\alpha=-1.67,-1.673$ or $-\frac{87}{52}$		
	- $\alpha \simeq-1.67-\frac{-0.007507185629 \ldots}{-4.415692926 \ldots}\{=-1.671700115 \ldots\}$ - $\alpha \simeq-1.673-\frac{0.005743106396 \ldots}{-4.41783855 \ldots}\{=-1.671700019 \ldots\}$ - $\alpha \simeq-\frac{87}{52}-\frac{0.006082942257 \ldots}{-4.417893838 \ldots}\{=-1.67170036 \ldots\}$	Evidence of applying NewtonRaphson for a second time on their answer to part (a)	M1
	So $\alpha=-1.67$ (2dp)	$\alpha=-1.67$	A1
			(2)
			marks)

Notes:

(a)

Incorrect differentiation followed by their estimate of α with no evidence of applying the NR formula is final dM0A0.
B1: B1 can be given for a correct numerical expression for either $f(-1.5)$ or $f^{\prime}(-1.5)$
Eg. either $(-1.5)^{2}+\frac{3}{(-1.5)}-1$ or $2(-1.5)-\frac{3}{(-1.5)^{2}}$ are fine for B1.
Final -This mark can be implied by applying at least one correct value of either $f(-1.5)$ or $\mathrm{f}^{\prime}(-1.5)$
dM1: in $-1.5-\frac{\mathrm{f}(-1.5)}{\mathrm{f}^{\prime}(-1.5)}$. So just $-1.5-\frac{\mathrm{f}(-1.5)}{\mathrm{f}^{\prime}(-1.5)}$ with an incorrect answer and no other evidence scores final dM0A0.
Give final dM0 for applying $1.5-\frac{f(-1.5)}{f^{\prime}(-1.5)}$ without first quoting the correct $N-R$ formula.
(b)

A1: Way 1: correct solution only
Candidate needs to state both of their values for $\mathrm{f}(x)$ to awrt (or truncated) 1 sf along with a reason and conclusion. Reference to change of sign or eg. $\mathrm{f}(-1.675) \times \mathrm{f}(-1.665)<0$ or a diagram or <0 and >0 or one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. $\alpha=-1.67$, root (or α or part (a)) is correct, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity.

A minimal acceptable reason and conclusion is "change of sign, hence root".
No explicit reference to 2 decimal places is required.
Stating "root is in between -1.675 and -1.665 " without some reference to is not sufficient for A1
Accept 0.015 as a correct evaluation of $f(-1.675)$

Question 3 notes continued

(b)

A1: Way 2: correct solution only
Their conclusion in Way 2 needs to convey that they understand that $\alpha=-1.67$ to 2 decimal places. Eg. "therefore my answer to part (a) [which must be -1.67] is correct" is fine for A1. $-1.67-\frac{\mathrm{f}(-1.67)}{\mathrm{f}^{\prime}(1.67)}=-1.67(2 \mathrm{dp})$ is sufficient for M1A1 in part (b).
The root of $\mathrm{f}(x)=0$ is $-1.67169988 \ldots$, so candidates can also choose x_{1} which is less than $-1.67169988 \ldots$ and choose x_{2} which is greater than $-1.67169988 \ldots$ with both x_{1} and x_{2} lying in the interval $[-1.675,-1.665]$ and evaluate $\mathrm{f}\left(x_{1}\right)$ and $\mathrm{f}\left(x_{2}\right)$.

Helpful Table

x	$\mathrm{f}(x)$
-1.675	0.014580224
-1.674	0.010161305
-1.673	0.005743106
-1.672	0.001325627
-1.671	-0.003091136
-1.670	-0.007507186
-1.669	-0.011922523
-1.668	-0.016337151
-1.667	-0.020751072
-1.666	-0.025164288
-1.665	-0.029576802

4(a)

$\mathbf{A}=\left(\begin{array}{cc}k & 3 \\ -1 & k+2\end{array}\right)$ where k is a constant and let $\mathrm{g}(k)=k^{2}+2 k+3$		
$\{\operatorname{det}(\mathbf{A})=\} k(k+2)+3$ or $k^{2}+2 k+3$	Correct $\operatorname{det}(\mathbf{A})$, un-simplified or simplified	B1
Way 1		
$=(k+1)^{2}-1+3$	Attempts to complete the square [usual rules apply]	M1
$=(k+1)^{2}+2>0$	$(k+1)^{2}+2$ and >0	A1 cso
		(3)
Way 2		
$\{\operatorname{det}(\mathbf{A})=\} k(k+2)+3$ or $k^{2}+2 k+3$	Correct $\operatorname{det}(\mathbf{A})$, un-simplified or simplified	B1
$\left\{b^{2}-4 a c=\right\} 2^{2}-4(1)(3)$	Applies " $b^{2}-4 a c$ " to their $\operatorname{det}(\mathbf{A})$	M1
All of - $b^{2}-4 a c=-8<0$ - some reference to $k^{2}+2 k+3$ being above the x-axis - \quad so $\operatorname{det}(\mathbf{A})>0$	Complete solution	A1 cso
		(3)
Way 3		
$\{\mathrm{g}(k)=\operatorname{det}(\mathbf{A})=\} k(k+2)+3$ or $k^{2}+2 k+3$	Correct $\operatorname{det}(\mathbf{A})$, un-simplified or simplified	B1
$\begin{aligned} & \mathrm{g}^{\prime}(k)=2 k+2=0 \Rightarrow k=-1 \\ & g_{\min }=(-1)^{2}+2(-1)+3 \end{aligned}$	Finds the value of k for which $\mathrm{g}^{\prime}(k)=0$ and substitutes this value of k into $g(k)$	M1
$\mathrm{g}_{\text {min }}=2$, so $\operatorname{det}(\mathbf{A})>0$	$\mathrm{g}_{\text {min }}=2$ and states $\operatorname{det}(\mathbf{A})>0$	A1 cso
		(3)
$\mathbf{A}^{-1}=\frac{1}{k^{2}+2 k+3}\left(\begin{array}{cc} k+2 & -3 \\ 1 & k \end{array}\right)$	$\frac{1}{\operatorname{their~} \operatorname{det}(\mathbf{A})}\left(\begin{array}{cc}k+2 & -3 \\ 1 & k\end{array}\right)$	M1
	Correct answer in terms of k	A1
(2)(5 marks)		

Question 4 continued

Notes:

(a)

B1: Also allow $k(k+2)--3$
Way 2: Proving $b^{2}-4 a c=-8<0$ by itself could mean that $\operatorname{det}(\mathbf{A})>0$ or $\operatorname{det}(\mathbf{A})<0$.
To gain the final A1 mark for Way 2, candidates need to show $b^{2}-4 a c=-8<0$ and make some reference to $k^{2}+2 k+3$ being above the x-axis (eg. states that coefficient of k^{2} is positive or evaluates $\operatorname{det}(\mathbf{A})$ for any value of k to give a positive result or sketches a quadratic curve that is above the x-axis) before then stating that $\operatorname{det}(\mathbf{A})>0$.
Attempting to solve $\operatorname{det}(\mathbf{A})=0$ by applying the quadratic formula or finding $-1 \pm \sqrt{2} \mathrm{i}$ is enough to score the M1 mark for Way 2. To gain A1 these candidates need to make some reference to $k^{2}+2 k+3$ being above the x-axis (eg. states that coefficient of k^{2} is positive $\boldsymbol{o r}$ evaluates $\operatorname{det}(\mathbf{A})$ for any value of k to give a positive result or sketches a quadratic curve that is above the x-axis) before then stating that $\operatorname{det}(\mathbf{A})>0$.
(b)

A1: Allow either $\frac{1}{(k+1)^{2}+2}\left(\begin{array}{cc}k+2 & -3 \\ 1 & k\end{array}\right)$ or $\left(\begin{array}{cc}\frac{k+2}{k^{2}+2 k+3} & \frac{-3}{k^{2}+2 k+3} \\ \frac{1}{k^{2}+2 k+3} & \frac{k}{k^{2}+2 k+3}\end{array}\right)$ or equivalent.

$$
2 z+z^{*}=\frac{3+4 \mathrm{i}}{7+\mathrm{i}}
$$

Way 1

$\left\{2 z+z^{*}=\right\} 2(a+\mathrm{i} b)+(a-\mathrm{i} b)$	Left hand side $=2(a+\mathrm{i} b)+(a-\mathrm{i} b)$ Can be implied by eg. $3 a+\mathrm{i} b$ Note: This can be seen anywhere in their solution	B1
$\ldots \ldots \ldots \ldots=\frac{(3+4 \mathrm{i})}{(7+\mathrm{i})} \frac{(7-\mathrm{i})}{(7-\mathrm{i})}$	Multiplies numerator and denominator of the right hand side by $7-\mathrm{i}$ or $-7+\mathrm{i}$	M1
$\ldots \ldots \ldots . .=\frac{25+25 \mathrm{i}}{50}$	Applies $\mathrm{i}^{2}=-1$ to and collects like terms to give right hand side $=\frac{25+25 \mathrm{i}}{50}$ or equivalent	A1
So, $3 a+\mathrm{i} b=\frac{1}{2}+\frac{1}{2} \mathrm{i}$	dependent on the previous B and M marks Equates either real parts or imaginary parts to give at least one of $a=\ldots$ or $b=\ldots$	ddM1
$\Rightarrow a=\frac{1}{6}, b=\frac{1}{2}$ or $z=\frac{1}{6}+\frac{1}{2} \mathrm{i}$	Either $a=\frac{1}{6}$ and $b=\frac{1}{2}$ or $z=\frac{1}{6}+\frac{1}{2} \mathrm{i}$	A1

Way 2
$\left\{2 z+z^{*}=\right\} 2(a+\mathrm{i} b)+(a-\mathrm{i} b)$
$(3 a+\mathrm{i} b)(7+\mathrm{i})=\ldots \ldots \ldots$.
$21 a+3 a \mathrm{i}+7 b \mathrm{i}-b=\ldots \ldots \ldots .$.
So, $(21 a-b)+(3 a+7 b)=3+4 \mathrm{i}$
gives $21 a-b=3,3 a+7 b=4$
$\Rightarrow a=\frac{1}{6}, b=\frac{1}{2}$ or $z=\frac{1}{6}+\frac{1}{2} \mathrm{i}$

Left hand side $=2(a+\mathrm{i} b)+(a-\mathrm{i} b)$ Can be implied by eg. $3 a+\mathrm{i} b$	B 1		
Multiplies their $(3 a+\mathrm{i} b)$ by $(7+\mathrm{i})$	M 1		
Applies $\mathrm{i}^{2}=-1$ to give left hand side $=21 a+3 a \mathrm{i}+7 b \mathrm{i}-b$	A 1		
dependent on the previous B and M marks			
Equates both real parts and imaginary parts to give at least one of $a=\ldots$ or $b=\ldots$	ddM1		
Either $a=\frac{1}{6}$ and $b=\frac{1}{2}$ or $z=\frac{1}{6}+\frac{1}{2} \mathrm{i}$	A1		
			(5)

Question 5 continued

Notes:

Some candidates may let $z=x+\mathrm{i} y$ and $z^{*}=x-\mathrm{i} y$.
So apply the mark scheme with $x \equiv a$ and $y \equiv b$.
For the final A1 mark, you can accept exact equivalents for a, b.

6(a)
$H: x y=25, P\left(5 t, \frac{5}{t}\right)$ is a general point on H
Either $5 t\left(\frac{5}{t}\right)=25$ or $y=\frac{25}{x}=\frac{25}{5 t}=\frac{5}{t} \quad$ or $\quad x=\frac{25}{y}=\frac{25}{\frac{5}{t}}=5 t \quad$ or \quad states
(b)

6(c)

$$
\begin{gathered}
y=\frac{25}{x} \Rightarrow 8\left(\frac{25}{x}\right)-2 x-75=0 \quad \text { or } \quad x=\frac{25}{y} \Rightarrow 8 y-2\left(\frac{25}{y}\right)-75=0 \\
\text { or } x=5 t, y=\frac{5}{t} \Rightarrow 8(5 t)-2\left(\frac{5}{t}\right)-75=0
\end{gathered}
$$

Substitutes $y=\frac{25}{x}$ or $x=\frac{25}{y}$ or $x=5 t$ and $y=\frac{5}{t}$ into the printed equation or their normal equation to obtain an equation in either x only, y only or t only

$$
\begin{aligned}
& 2 x^{2}+75 x-200=0 \text { or } 8 y^{2}-75 y-50=0 \text { or } 2 t^{2}+15 t-8=0 \text { or } \\
& 10 t^{2}+75 t-40=0 \\
& (2 x-5)(x+40)=0 \Rightarrow x=\ldots \text { or }(y-10)(8 y+5)=0 \Rightarrow y=\ldots \text { or } \\
& (2 t-1)(t+8)=0 \Rightarrow t=\ldots
\end{aligned}
$$

dependent on the previous M mark
Correct attempt of solving a 3 TQ to find either $x=\ldots, y=\ldots$ or $t=\ldots$
Finds at least one of either $x=-40$ or $y=-\frac{5}{8}$

$$
B\left(-40,-\frac{5}{8}\right)
$$

Both correct coordinates (If coordinates are not stated they can be paired together
as $x=\ldots, y=\ldots$)

Notes:

(a) A conclusion is not required on this occasion in part (a).

B1: Condone reference to $c=5$ (as $x y=c^{2}$ and $\left(c t, \frac{c}{t}\right)$ are referred in the Formula book.)
(b)
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x}=-\frac{5}{t^{2}}\left(\frac{1}{5}\right)=-\frac{1}{t^{2}} \Rightarrow m_{N}=t^{2} \Rightarrow y-10=t^{2}\left(x-\frac{5}{2}\right)$ scores only the first M1.
When $t=\frac{1}{2}$ is substituted giving $y-10=\frac{1}{4}\left(x-\frac{5}{2}\right)$ the response then automatically gets A1(implied) M1 (implied) M1

Question 6 notes continued

(c)

You can imply the final three marks (dM1A1A1) for either

- $8\left(\frac{25}{x}\right)-2 x-75=0 \rightarrow\left(-40,-\frac{5}{8}\right)$
- $8 y-2\left(\frac{25}{y}\right)-75=0 \rightarrow\left(-40,-\frac{5}{8}\right)$
- $8(5 t)-2\left(\frac{5}{t}\right)-75=0 \rightarrow\left(-40,-\frac{5}{8}\right)$
with no intermediate working.
You can also imply the middle dM1A1 marks for either
- $8\left(\frac{25}{x}\right)-2 x-75=0 \rightarrow x=-40$
- $8 y-2\left(\frac{25}{y}\right)-75=0 \rightarrow y=-\frac{5}{8}$
- $8(5 t)-2\left(\frac{5}{t}\right)-75=0 \rightarrow x=-40$ or $y=-\frac{5}{8}$
with no intermediate working.
Writing $x=-40, y=-\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8},-40\right)$ is final A0.

Ignore stating $B\left(\frac{5}{2}, 10\right)$ in addition to $B\left(-40,-\frac{5}{8}\right)$

Question	Scheme		Marks
7(d) continued	Way 2		
	Either $\cos 2 \theta=-\frac{12}{13}, \sin 2 \theta=\frac{5}{13}$ or $\tan 2 \theta=-\frac{5}{12}$	Correct follow through equation in 2θ based on their matrix \mathbf{R}	M1
	$\{k=\} \tan \left(\frac{1}{2} \arccos \left(-\frac{12}{13}\right)\right)$	Full method of finding 2θ, then θ and applying $\tan \theta$	M1
		$\tan \left(\frac{1}{2} \arccos \left(-\frac{12}{13}\right)\right)$ or $\tan \left(\right.$ awrt $\left.78.7^{\circ}\right)$ or \tan (awrt 1.37). Can be implied.	A1
	So $k=5$	$k=5$ by a correct solution only	A1
			(4)
(10 marks)			
Notes:			
(a) Condone "Turn" for the $1^{\text {st }} \mathrm{B} 1$ mark. Penalise the first B1 mark for candidates giving a combination of transformations.			
(c)			
Allow $1^{\text {st }} \mathrm{M} 1$ for eg. "their matrix $\mathbf{R} "\binom{1}{k}=\binom{1}{k}$ or "their matrix $\mathbf{R} "\binom{k}{k^{2}}=\binom{k}{k^{2}}$			
or "their matrix \mathbf{R} " $\binom{\frac{1}{k}}{1}=\binom{\frac{1}{k}}{1}$ or equivalent			
$y=(\tan \theta) x:\left(\begin{array}{rr} \cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta \end{array}\right)=\left(\begin{array}{rr} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{array}\right)$			

Question 8 continued

Notes:

(b)

Give $3^{\text {rd }} \mathrm{M} 1$ for $z^{2}+k=0, k>0 \Rightarrow$ at least one of either $z=\sqrt{k} \mathrm{i}$ or $z=-\sqrt{k} \mathrm{i}$
Give $3^{\text {rd }} \mathrm{M} 0$ for $z^{2}+k=0, k>0 \Rightarrow z= \pm k \mathrm{i}$
Give $3{ }^{\text {rd }} \mathrm{M} 0$ for $z^{2}+k=0, k>0 \Rightarrow z= \pm k$ or $z= \pm \sqrt{k}$
Candidates do not need to find $a=18, b=219$

Question	Scheme		Marks
9(a)	$2 x^{2}+4 x-3=0$ has roots α, β		
	$\alpha+\beta=-\frac{4}{2} \text { or }-2, \alpha \beta=-\frac{3}{2}$	Both $\alpha+\beta=-\frac{4}{2}$ and $\alpha \beta=-\frac{3}{2}$. This may be seen or implied anywhere in this question.	B1
(i)	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\ldots \ldots$.	Use of a correct identity for $\alpha^{2}+\beta^{2}$ (May be implied by their work)	M1
	$=(-2)^{2}-2\left(-\frac{3}{2}\right)=7$	7 from correct working	A1 cso
(ii)	$\begin{aligned} & \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\ldots \ldots . \\ & \text { or }=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)=\ldots \ldots \end{aligned}$	Use of an appropriate and correct identity for $\alpha^{3}+\beta^{3}$ (May be implied by their work)	M1
	$\begin{aligned} & =(-2)^{3}-3\left(-\frac{3}{2}\right)(-2)=-17 \\ \text { or } & =(-2)\left(7--\frac{3}{2}\right)=-17 \end{aligned}$	-17 from correct working	A1 cso
			(5)
(b)	$\begin{aligned} \text { Sum } & =\alpha^{2}+\beta+\beta^{2}+\alpha \\ & =\alpha^{2}+\beta^{2}+\alpha+\beta \\ & =7+(-2)=5 \end{aligned}$	Uses at least one of their $\alpha^{2}+\beta^{2}$ or $\alpha+\beta$ in an attempt to find a numerical value for the sum of $\left(\alpha^{2}+\beta\right)$ and $\left(\beta^{2}+\alpha\right)$	M1
	$\begin{aligned} \text { Product } & =\left(\alpha^{2}+\beta\right)\left(\beta^{2}+\alpha\right) \\ & =(\alpha \beta)^{2}+\alpha^{3}+\beta^{3}+\alpha \beta \\ & =\left(-\frac{3}{2}\right)^{2}-17-\frac{3}{2}=-\frac{65}{4} \end{aligned}$	Expands $\left(\alpha^{2}+\beta\right)\left(\beta^{2}+\alpha\right)$ and uses at least one of their $\alpha \beta$ or $\alpha^{3}+\beta^{3}$ in an attempt to find a numerical value for the product of $\left(\alpha^{2}+\beta\right)$ and $\left(\beta^{2}+\alpha\right)$	M1
	$x^{2}-5 x-\frac{65}{4}=0$	Applies $x^{2}-($ sum $) x+$ product (Can be implied) (" $=0$ " not required)	M1
	$4 x^{2}-20 x-65=0$	Any integer multiple of $4 x^{2}-20 x-65=0$ including the " $=0$ "	A1
			(4)

9(b) Alternative: Finding $\alpha^{2}+\beta$ and $\beta^{2}+\alpha$ explicitly
continued

Notes:

(a)
$\mathbf{1}^{\text {st }} \mathbf{A 1}: \alpha+\beta=2, \alpha \beta=-\frac{3}{2} \Rightarrow \alpha^{2}+\beta^{2}=4-2\left(-\frac{3}{2}\right)=7$ is M1A0 cso
Finding $\alpha+\beta=-2, \alpha \beta=-\frac{3}{2}$ by writing down or applying $\frac{-4+\sqrt{40}}{4}, \frac{-4+\sqrt{40}}{4}$ but then
writing $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=4+3=7$ and $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=-8-9=-17$
scores B0M1A0M1A0 in part (a).
Applying $\frac{-4+\sqrt{40}}{4}, \frac{-4+\sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0
Eg: Give no credit for $\left(\frac{-4+\sqrt{40}}{4}\right)^{2}+\left(\frac{-4+\sqrt{40}}{4}\right)^{2}=7$
or for $\left(\frac{-4+\sqrt{40}}{4}\right)^{3}+\left(\frac{-4+\sqrt{40}}{4}\right)^{3}=-17$

(b)

Candidates are allowed to apply $\frac{-4+\sqrt{40}}{4}, \frac{-4+\sqrt{40}}{4}$ explicitly in part (b).
A correct method leading to a candidate stating $a=4, b=-20, c=-65$ without writing a final answer of $4 x^{2}-20 x-65=0$ is final M1A0

Question	Scheme		Marks
10	$u_{1}=5, u_{n+1}=3 u_{n}+2, n \geq 1$. Required to prove the result,$u_{n}=2 \times(3)^{n}-1, n \in \mathbb{Z}^{+}$		
(i)	$n=1: u_{1}=2(3)-1=5 \quad u_{1}=2$	$u_{1}=2(3)-1=5$ or $u_{1}=6-1=5$	B1
	(Assume the result is true for $n=k$)		
	$u_{k+1}=3\left(2(3)^{k}-1\right)+2 \quad$ Substitu	Substitutes $u_{k}=2(3)^{k}-1$ into $u_{k+1}=3 u_{k}+2$	M1
	$=2(3)^{k+1}-1$ $\begin{array}{l}\text { depe } \\ \text { Expr }\end{array}$	dependent on the previous M mark Expresses u_{k+1} in term of 3^{k+1}	dM1
		$u_{k+1}=2(3)^{k+1}-1$ by correct solution only	A1
	If the result is true for $n=k$, then it is true for $n=k+1$. As the result has been shown to be true for $n=1$, then the result is true for all n		A1 cso
			(5)
	Required to prove the result $\sum_{r=1}^{n} \frac{4 r}{3^{r}}=3-\frac{(3+2 n)}{3^{n}}, n \in \mathbb{Z}^{+}$		
(ii)	$n=1:$ LHS $=\frac{4}{3}$, RHS $=3-\frac{5}{3}=\frac{4}{3}$	Shows or states both LHS $=\frac{4}{3}$ and RHS $=\frac{4}{3}$ or states LHS $=$ RHS $=\frac{4}{3}$	B1
	(Assume the result is true for $n=k$)		
	$\sum_{r=1}^{k+1} \frac{4 r}{3^{r}}=3-\frac{(3+2 k)}{3^{k}}+\frac{4(k+1)}{3^{k+1}}$	Adds the $(k+1)^{\text {th }}$ term to the sum of k terms	M1
	$=3-3(3+2 k)+4(k+1)$	dependent on the previous M mark Makes 3^{k+1} or (3) 3^{k} a common denominator for their fractions.	dM1
	$3^{k+1}+\frac{3^{k+1}}{}$	Correct expression with common denominator 3^{k+1} or (3) 3^{k} for their fractions.	A1
	$\begin{aligned} & =3-\left(\frac{3(3+2 k)-4(k+1)}{3^{k+1}}\right) \\ & =3-\left(\frac{5+2 k}{3^{k+1}}\right) \end{aligned}$		
	$=3-\frac{(3+2(k+1))}{3^{k+1}}$	$3-\frac{(3+2(k+1))}{3^{k+1}}$ by correct solution only	A1
	If the result is true for $n=k$, the shown to be true for $n=1$, then	is true for $n=k+1$. As the result has been result is true for all n	A1 cso
			(6)
(11 marks)			

Question 10 continued

Notes:

(i) \& (ii)

Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part.
It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.
(i)
$u_{1}=5$ by itself is not sufficient for the $1^{\text {st }} \mathrm{B} 1$ mark in part (i).
$u_{1}=3+2$ without stating $u_{1}=2(3)-1=5$ or $u_{1}=6-1=5$ is B 0
(ii)

LHS = RHS by itself is not sufficient for the $1^{\text {st }} \mathrm{B} 1$ mark in part (ii).

